WIF-1 gene inhibition and Wnt signal transduction pathway activation in NSCLC tumorigenesis

نویسندگان

  • Qiong Tang
  • Hui Zhao
  • Bingjun Yang
  • Li Li
  • Qiulan Shi
  • Chunyang Jiang
  • Huibin Liu
چکیده

The aim of the present study is to explore the differential expression of key molecules associated with Wnt signaling in both clinical non-small cell lung cancer (NSCLC) tissue and adjacent normal lung tissue, and to discuss the tumorigenic role of the activation of Wnt signaling pathways in NSCLC. A total of 52 NSCLC patients were employed in the present study. Lung cancer tissue samples and paracarcinoma tissue samples were obtained from these patients, who had undergone surgical resection of their primary cancer. The cases were diagnosed by hematoxylin and eosin staining. Using reverse transcription-quantitative polymerase chain reaction and immunohistochemical straining, the messenger RNA (mRNA) and protein expression levels of Wnt inhibitory factor-1 (WIF-1) and important molecules associated with Wnt signaling pathways were detected. Compared with normal tissues, a marked decreased in the mRNA and protein expression levels of WIF-1, and an increase in β-catenin and cyclin D1 expression, were observed in tumor tissues. This suggests that the activation of the Wnt/β-catenin signaling pathway may be closely associated with lymph nodal metastasis and lower pathological classification. However, no obvious difference could be observed in adenomatous polyposis coli (APC) expression levels between lung cancer tissues and adjacent tissues to the carcinoma. The activation of the Wnt/β-catenin signaling pathway in NSCLC could be initiated by WIF-1 gene inhibition without APC expression changes, and this may be different to the mechanism in other tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypermethylation in Human Lung Cancer Wnt Inhibitory Factor-1 Is Silenced by Promoter

Aberrant activation of the Wingless-type (Wnt) signaling pathway is associated with a variety of human cancers, and we recently reported the importance of aberrant Wnt signaling in lung cancer. On the other hand, inhibition of Wnt signaling suppresses growth in numerous cell types. Wnt inhibitory factor-1 (WIF-1) is a secreted antagonist that can bind Wnt in the extracellular space and inhibit ...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer.

Aberrant activation of the Wingless-type (Wnt) signaling pathway is associated with a variety of human cancers, and we recently reported the importance of aberrant Wnt signaling in lung cancer. On the other hand, inhibition of Wnt signaling suppresses growth in numerous cell types. Wnt inhibitory factor-1 (WIF-1) is a secreted antagonist that can bind Wnt in the extracellular space and inhibit ...

متن کامل

Wnt signaling pathway in non-small cell lung cancer.

Wnt/β-catenin alterations are prominent in human malignancies. In non-small cell lung cancer (NSCLC), β-catenin and APC mutations are uncommon, but Wnt signaling is important in NSCLC cell lines, and Wnt inhibition reduces proliferation. Overexpression of Wnt-1, -2, -3, and -5a and of Wnt-pathway components Frizzled-8, Dishevelled, Porcupine, and TCF-4 is common in resected NSCLC and is associa...

متن کامل

Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis.

Wnt factors are involved in the regulation of all steps of cartilage development. The activity of Wnt factors is generally regulated at the extracellular level by factors like the Dkk family, sFRPs, Cerberus and Wnt inhibitory factor 1 (Wif-1). Here we report that Wif-1 is highly expressed at cartilage-mesenchyme interfaces of the early developing skeleton. In fetal and postnatal skeletal devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017